Effect of a cyclooxygenase-2 inhibitor on postexercise muscle protein synthesis in humans.
نویسندگان
چکیده
Nonselective blockade of the cyclooxygenase (COX) enzymes in skeletal muscle eliminates the normal increase in muscle protein synthesis following resistance exercise. The current study tested the hypothesis that this COX-mediated increase in postexercise muscle protein synthesis is regulated specifically by the COX-2 isoform. Sixteen males (23 +/- 1 yr) were randomly assigned to one of two groups that received three doses of either a selective COX-2 inhibitor (celecoxib; 200 mg/dose, 600 mg total) or a placebo in double-blind fashion during the 24 h following a single bout of knee extensor resistance exercise. At rest and 24 h postexercise, skeletal muscle protein fractional synthesis rate (FSR) was measured using a primed constant infusion of [(2)H(5)]phenylalanine coupled with muscle biopsies of the vastus lateralis, and measurements were made of mRNA and protein expression of COX-1 and COX-2. Mixed muscle protein FSR in response to exercise (P < 0.05) was not suppressed by the COX-2 inhibitor (0.056 +/- 0.004 to 0.108 +/- 0.014%/h) compared with placebo (0.074 +/- 0.004 to 0.091 +/- 0.005%/h), nor was there any difference (P > 0.05) between the placebo and COX-2 inhibitor postexercise when controlling for resting FSR. The COX-2 inhibitor did not influence COX-1 mRNA, COX-1 protein, or COX-2 protein levels, whereas it did increase (P < 0.05) COX-2 mRNA (3.0 +/- 0.9-fold) compared with placebo (1.3 +/- 0.3-fold). It appears that the elimination of the postexercise muscle protein synthesis response by nonselective COX inhibitors is not solely due to COX-2 isoform blockade. Furthermore, the current data suggest that the COX-1 enzyme is likely the main isoform responsible for the COX-mediated increase in muscle protein synthesis following resistance exercise in humans.
منابع مشابه
β-Adrenergic receptor blockade blunts postexercise skeletal muscle mitochondrial protein synthesis rates in humans.
β-Adrenergic receptor (AR) signaling is a regulator of skeletal muscle protein synthesis and mitochondrial biogenesis in mice. We hypothesized that β-AR blockade blunts postexercise skeletal muscle mitochondrial protein synthesis rates in adult humans. Six healthy men (mean ± SD: 26 ± 6 yr old, 39.9 ± 4.9 ml·kg(-1)·min(-1) peak O(2) uptake, 26.7 ± 2.0 kg/m(2) body mass index) performed 1 h of s...
متن کاملIbuprofen treatment blunts early translational signaling responses in human skeletal muscle following resistance exercise.
Cyclooxygenase-1 and -2 pathway-derived prostaglandins (PGs) have been implicated in adaptive muscle responses to exercise, but the role of PGs in contraction-induced muscle signaling has not been determined. We investigated the effect of inhibition of cyclooxygenase-1 and -2 activities with the nonsteroidal anti-inflammatory drug ibuprofen on human muscle signaling responses to resistance exer...
متن کاملMuscle sympathetic nerve responses to physiological changes in prostaglandin production in humans.
Previous studies suggest that prostaglandins may contribute to exercise-induced increases in muscle sympathetic nerve activity (MSNA). To test this hypothesis, MSNA was measured at rest and during exercise before and after oral administration of ketoprofen, a cyclooxygenase inhibitor, or placebo. Twenty-one subjects completed two bouts of graded dynamic and isometric handgrip to fatigue. Each e...
متن کاملThe influence of constitutive COX-2 in smooth muscle tissue on the contractile effect of phenylephrine in the rat abdominal aorta.
Prostanoids are involved in the phenylephrine-induced contraction of the aorta. Here, we examined whether or not constitutive cyclooxygenase-2 (phosholipases C and A2) is the source of prostanoids in the smooth muscle of the arterial wall of the thoracic and abdominal aorta. Both cyclooxygenase isoforms (COX-1 and COX-2) were expressed in the two aortic segments, but their expression was not al...
متن کاملEffects of intracerebroventricular injection of vitamin B12 on formalin-induced muscle pain in rats: Role of cyclooxygenase pathway and opioid receptors
Vitamin B12 modulates pain at the local and peripheral levels. This study has investigated the effects of intracerebroventricular (ICV) injection of vitamin B12 on themuscle pain. We used diclofenac (cyclooxygenase inhibitor) and naloxone (opioid receptors antagonist) to clarify the possible mechanisms. For ICV injections, a guide cannula was implanted in the left lateral ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Endocrinology and metabolism
دوره 298 2 شماره
صفحات -
تاریخ انتشار 2010